Data Analytics Applied to Predictive Maintenance

Authors

  • Andres Leonardo Alfonso Diaz Universidad Pedagógica y Tecnológica de Colombia
  • Marien Rocio Barrera Gómez Universidad Pedagógica y Tecnológica de Colombia
  • Iván David Alfonso Díaz Universidad de los Andes
  • Jerley Andres Mejia Gallo Universidad Pedagógica y Tecnológica de Colombia

DOI:

https://doi.org/10.69681/lajae.v6i1.28

Keywords:

Information management, Predictive maintenance, Data mining, Decision making, Random forest, Neural network

Abstract

This paper describes in a simple way the development of a web application for predictive maintenance of equipment implemented in the electronics laboratory of the Universidad Pedagógica y Tecnológica de Colombia Sogamoso. This application was developed in Python language to achieve the manipulation and processing of large amounts of data. We developed a machine learning algorithm to predict damages in the laboratory equipment and enable the stakeholder to
schedule maintenance to these equipments to prevent them from getting damaged. We implemented and compared the results obtained for two models (Random Forest and MLPRegressor Neural Network), being Random Forest the most accurate model.

Downloads

Download data is not yet available.

Downloads

Published

2023-12-31

How to Cite

Alfonso Diaz, A. L., Barrera Gómez, M. R., Alfonso Díaz, I. D., & Mejia Gallo, J. A. (2023). Data Analytics Applied to Predictive Maintenance. Latin American Journal of Applied Engineeringg, 6(1), 25–32. https://doi.org/10.69681/lajae.v6i1.28

Issue

Section

Articles

Categories

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.