Fabrication of Sn-Doped TiO₂ Thin Films with Solvothermal Post-Crystallization
DOI:
https://doi.org/10.69681/lajae.v8i1.42Keywords:
Crystallization, Solvothermal, Thin filmsAbstract
TiO2 thin films are widely studied owing to their great potential application in electronic or optoelectronic devices. They are of great interest due to their unique properties, which make them suitable for use in thin film transistors, sensors, or solar cells. Obtaining TiO2 thin films with optimal characteristics for specific applications depends on the synthesis and fabrication process. In this work, TiO2 thin films are obtained through a low-temperature and facile process and fabrication method based on the sol-gel process. Sn-doped TiO2 thin films were synthesized to modify their physical properties. The obtained films were under a post-crystallization process to improve their structure. The Sn-doped TiO2 films show anatase structure with thickness between 173 to 237 nm and roughness lower than 2 nm.
Downloads
References
[1] T. Dikici, M. Toparli, Microstructure and mechanical properties of nanostructured and microstructured TiO2 films, Materials Science and Engineering: A 661 (2016) 19–24. https://doi.org/10.1016/j.msea.2016.03.023.
[2] E. Léonard, V. Jeux, 14 - Illuminating metal oxides containing luminescent probes for personalized medicine, in: S. Sagadevan, J. Podder, F. Mohammad (Eds.), Metal Oxides for Optoelectronics and Optics-Based Medical Applications, Elsevier, 2022: pp. 339–395. https://doi.org/https://doi.org/10.1016/B978-0-323-85824-3.00015-4.
[3] A.S. Hassanien, A.A. Akl, Optical characterizations and refractive index dispersion parameters of annealed TiO2 thin films synthesized by RF-sputtering technique at different flow rates of the reactive oxygen gas, Physica B Condens Matter 576 (2020). https://doi.org/10.1016/j.physb.2019.411718.
[4] B.D. Bhuskute, H. Ali-Löytty, J. Saari, A. Tukiainen, M. Valden, Ti 3+ Self-Doping-Mediated Optimization of TiO 2 Photocatalyst Coating Grown by Atomic Layer Deposition , ACS Applied Engineering Materials 2 (2024) 2278–2284. https://doi.org/10.1021/acsaenm.4c00372.
[5] R.T. Mittireddi, N.H. Makani, D.G. Prajapati, A.R.S. Gautam, R. Banerjee, E. Panda, Microstructure-induced functionality in titanium dioxide thin films, Mater Charact 199 (2023). https://doi.org/10.1016/j.matchar.2023.112818.
[6] B. Bajorowicz, M.P. Kobylański, A. Malankowska, P. Mazierski, J. Nadolna, A. Pieczyńska, A. Zaleska-Medynska, 4 - Application of metal oxide-based photocatalysis, in: A. Zaleska-Medynska (Ed.), Metal Oxide-Based Photocatalysis, Elsevier, 2018: pp. 211–340. https://doi.org/https://doi.org/10.1016/B978-0-12-811634-0.00004-4.
[7] H.N.C. Dharma, J. Jaafar, N. Widiastuti, H. Matsuyama, S. Rajabsadeh, M.H.D. Othman, M.A. Rahman, N.N.M. Jafri, N.S. Suhaimin, A.M. Nasir, N.H. Alias, A Review of Titanium Dioxide (TiO2)-Based Photocatalyst for Oilfield-Produced Water Treatment, Membranes (Basel) 12 (2022). https://doi.org/10.3390/membranes12030345.
[8] T.C. Paul, M.H. Babu, J. Podder, B.C. Dev, S.K. Sen, S. Islam, Influence of Fe3+ ions doping on TiO2 thin films: Defect generation, d-d transition and band gap tuning for optoelectronic device applications, Physica B Condens Matter 604 (2021). https://doi.org/10.1016/j.physb.2020.412618.
[9] C. Negi, P. Kandwal, J. Rawat, M. Sharma, H. Sharma, G. Dalapati, C. Dwivedi, Carbon-doped titanium dioxide nanoparticles for visible light driven photocatalytic activity, Appl Surf Sci 554 (2021). https://doi.org/10.1016/j.apsusc.2021.149553.
[10] Q. Zou, Y. Yamasaki, Y. Nishi, M. Matsubara, R. Osuga, K. Ninomiya, M. Nishibori, A. Muramatsu, K. Kanie, Cu-Doped TiO 2 Nanoparticle-Based Thin Films Obtained via the Mist-Deposition Method and Their Photocatalytic Antibacterial Properties , ACS Applied Engineering Materials 3 (2025) 1200–1209. https://doi.org/10.1021/acsaenm.5c00071.
[11] M.F. Gálvez-López, M.J. Muñoz-Batista, C.G. Alvarado-Beltrán, J.L. Almaral-Sánchez, B. Bachiller-Baeza, A. Kubacka, M. Fernández-García, Sn modification of TiO2 anatase and rutile type phases: 2-Propanol photo-oxidation under UV and visible light, Appl Catal B 228 (2018) 130–141. https://doi.org/10.1016/j.apcatb.2018.01.075.
[12] A. Arunachalam, S. Dhanapandian, C. Manoharan, Effect of Sn doping on the structural, optical and electrical properties of TiO2 films prepared by spray pyrolysis, Physica E Low Dimens Syst Nanostruct 76 (2015) 35–46. https://doi.org/10.1016/j.physe.2015.09.048.
[13] R. Graillot-Vuillecot, A.-L. Thomann, T. Lecas, C. Cachoncinlle, E. Millon, A. Caillard, Properties of Ti-oxide thin films grown in reactive magnetron sputtering with self-heating target, Vacuum 197 (2022) 110813. https://doi.org/https://doi.org/10.1016/j.vacuum.2021.110813.
[14] Q. Zhang, C. Li, Pure anatase phase titanium dioxide films prepared by mist chemical vapor deposition, Nanomaterials 8 (2018). https://doi.org/10.3390/nano8100827.
[15] M.G. Ambartsumov, O.M. Chapura, V.A. Tarala, Synthesis of titanium dioxide thin films via thermo- and plasma-enhanced atomic layer deposition, Appl Surf Sci 672 (2024) 160822. https://doi.org/https://doi.org/10.1016/j.apsusc.2024.160822.
[16] J.A. Camez-Cota, P. Gómez-López, A. Gaxiola, R.A. Várgas-Ortiz, V.M. Orozco-Carmona, R. Ramírez-Bon, A. Castro-Beltrán, C.G. Alvarado-Beltrán, A green approach modifications of TiO2 thin films for UV photophysical applications, Opt Mater (Amst) 165 (2025). https://doi.org/10.1016/j.optmat.2025.117153.
[17] D. Sánchez-Ahumada, L.J. Verastica-Ward, M.F. Gálvez-López, A. Castro-Beltrán, R. Ramirez-Bon, C.G. Alvarado-Beltrán, Low-temperature synthesis and physical characteristics of PS[sbnd]TiO 2 hybrid films for transparent dielectric gate applications, Polymer (Guildf) 172 (2019) 170–177. https://doi.org/10.1016/j.polymer.2019.03.067.
[18] S. Obregón, V. Rodríguez-González, Photocatalytic TiO2 thin films and coatings prepared by sol–gel processing: a brief review, J Solgel Sci Technol 102 (2022) 125–141. https://doi.org/10.1007/s10971-021-05628-5.
[19] Y.F. Ma, Y.M. Wang, J. Wen, A. Li, X.L. Li, M. Leng, Y.B. Zhao, Z.H. Lu, Review of roll-to-roll fabrication techniques for colloidal quantum dot solar cells, Journal of Electronic Science and Technology 21 (2023). https://doi.org/10.1016/j.jnlest.2023.100189.
[20] A.K. Vishwakarma, N.K. Yadav, A.K. Sharma, P. Yadav, S.K. Yadav, L. Yadava, Morphological and electronic properties of titanium dioxide thin film, Mater Today Proc 42 (2021) 1642–1646. https://doi.org/https://doi.org/10.1016/j.matpr.2020.07.474.
[21] S.M. Al Amin, M.A. Kowser, Influence of Ag doping on structural, morphological, and optical characteristics of sol-gel spin-coated TiO2 thin films, Heliyon 10 (2024). https://doi.org/10.1016/j.heliyon.2024.e37558.
[22] Y. Jiang, H. Liu, K. Shi, C. Tang, J. Song, Effect of annealing temperature on wettability of TiO2/PDA thin films, Surf Coat Technol 411 (2021). https://doi.org/10.1016/j.surfcoat.2021.126994.
[23] S.A. Bhandarkar, Prathvi, A. Kompa, M.S. Murari, D. Kekuda, R.K. Mohan, Investigation of structural and optical properties of spin coated TiO2:Mn thin films, Opt Mater (Amst) 118 (2021). https://doi.org/10.1016/j.optmat.2021.111254.
[24] A. Moatti, R. Bayati, J. Narayan, Epitaxial growth of rutile TiO2 thin films by oxidation of TiN/Si{100} heterostructure, Acta Mater 103 (2016) 502–511. https://doi.org/10.1016/j.actamat.2015.10.022.
[25] B. Zhang, G. Xu, S. Liu, F. Chi, Y. Tian, Electrochromic TiO2 films by a facile solvothermal process: Effect of ethanol content on growth and performance, Opt Mater (Amst) 122 (2021) 111744. https://doi.org/https://doi.org/10.1016/j.optmat.2021.111744.
[26] A.H. Mamaghani, F. Haghighat, C.-S. Lee, Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance, Chemosphere 219 (2019) 804–825. https://doi.org/https://doi.org/10.1016/j.chemosphere.2018.12.029.
[27] G. Arthi, J. Archana, M. Navaneethan, S. Ponnusamy, Y. Hayakawa, C. Muthamizhchelvan, S.G. Ramaraj, Solvothermal synthesis of 3D hierarchical rutile TiO2 nanostructures for efficient dye-sensitized solar cells, Mater Lett 337 (2023) 133961. https://doi.org/https://doi.org/10.1016/j.matlet.2023.133961.
[28] K. Ono, K. Kimura, T. Kato, K. Hayashi, R.M.G. Rajapakse, M. Shimomura, Epitaxial growth of a homogeneous anatase TiO2 thin film on LaAlO3 (001) using a solvothermal method with anticorrosive ligands, Chemical Engineering Journal 451 (2023) 138893. https://doi.org/https://doi.org/10.1016/j.cej.2022.138893.
[29] D.R. Sarker, M.N. Uddin, M. Elias, Z. Rahman, R.K. Paul, I.A. Siddiquey, M.A. Hasnat, R. Karim, M.A. Arafath, J. Uddin, P-doped TiO2-MWCNTs nanocomposite thin films with enhanced photocatalytic activity under visible light exposure, Clean Eng Technol 6 (2022). https://doi.org/10.1016/j.clet.2021.100364.
[30] D. Rajkumar, H. Umamahesvari, P. Nagaraju, Micro spherical anatase phase TiO2 thin films for room temperature operated formaldehyde gas sensor applications, Results Chem 5 (2023). https://doi.org/10.1016/j.rechem.2023.100946.
[31] E.R. Silva-Osuna, A.R. Vilchis-Nestor, R.C. Villarreal-Sanchez, A. Castro-Beltran, P.A. Luque, Study of the optical properties of TiO2 semiconductor nanoparticles synthesized using Salvia rosmarinus and its effect on photocatalytic activity, Opt Mater (Amst) 124 (2022). https://doi.org/10.1016/j.optmat.2022.112039.
[32] A. Castro-Beltrán, P.A. Luque, H.E. Garrafa-Gálvez, R.A. Vargas-Ortiz, A. Hurtado-Macías, A. Olivas, J.L. Almaral-Sánchez, C.G. Alvarado-Beltrán, Titanium butoxide molar ratio effect in the TiO2 nanoparticles size and methylene blue degradation, Optik (Stuttg) 157 (2018) 890–894. https://doi.org/10.1016/j.ijleo.2017.11.185.
[33] S. Shukla, S. Shirodkar, E. Panda, Anatase to rutile transition in TiO2 thin films: Role of tantalum and oxygen, J Alloys Compd 1006 (2024) 176242. https://doi.org/https://doi.org/10.1016/j.jallcom.2024.176242.
[34] K. Basavaraj, A. Nyayban, S. Panda, Structural phase transitions and elastic properties of TiO 2 polymorphs: Ab-initio study , IOP Conf Ser Mater Sci Eng 1248 (2022) 012064. https://doi.org/10.1088/1757-899x/1248/1/012064.
[35] M. Song, Z. Lu, D. Li, Phase transformations among TiO2polymorphs, Nanoscale 12 (2020) 23183–23190. https://doi.org/10.1039/d0nr06226j.
[36] D.A.S. Mulus, M.D. Permana, Y. Deawati, D.R. Eddy, A current review of TiO2 thin films: synthesis and modification effect to the mechanism and photocatalytic activity, Applied Surface Science Advances 27 (2025). https://doi.org/10.1016/j.apsadv.2025.100746.
[37] A. Artesani, S. Mosca, M.V. Dozzi, G. Valentini, D. Comelli, Determination of crystal phases in mixed TiO2 paint films by non-invasive optical spectroscopies, Microchemical Journal 155 (2020). https://doi.org/10.1016/j.microc.2020.104739.
[38] İ. Kanmaz, M. Tomakin, G. Aytemiz, M. Manır, V. Nevruzoğlu, Influence of Thermal Annealing on the Band-Gap of TiO2 Thin Films Produced by the Sol-Gel Method, Recep Tayyip Erdoğan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 5 (2024) 49–56. https://doi.org/10.53501/rteufemud.1395013.
[39] S. Sassi, A. Bouich, A. Hajjaji, L. Khezami, B. Bessais, B.M. Soucase, Cu-Doped TiO2 Thin Films by Spin Coating: Investigation of Structural and Optical Properties, Inorganics (Basel) 12 (2024) 188. https://doi.org/10.3390/inorganics12070188.
[40] R. Rajeswari, D. Venugopal, A. George, A.D. Raj, S.J. Sundaram, A.K.H. Bashir, M. Maaza, K. Kaviyarasu, Synthesis and characterization of Sn-doped TiO2 film for antibacterial applications, Appl Phys A Mater Sci Process 127 (2021). https://doi.org/10.1007/s00339-021-04656-w.
Downloads
Published
How to Cite
License
Copyright (c) 2025 Jesús Camez Cota, Paulette Gómez López, Alberto Gaxiola, Diana Sánchez Ahumada, Rafael Ramírez Bon, Manuel Cota Ruiz, Andrés Castro Beltrán, Clemente Alvarado Beltrán

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Latin American Journal of Applied Engineering agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
