Fabricación de Películas Delgadas de TiO₂ Dopadas con Sn con Post-Cristalización por Solvotermal

Autores/as

  • Jesús Camez Cota Facultad de Ingeniería Mochis
  • Paulette Gómez López Facultad de Medicina, Universidad Autónoma de Sinaloa
  • Alberto Gaxiola Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa
  • Diana Sánchez Ahumada Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa
  • Rafael Ramírez Bon Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Unidad Querétaro
  • Manuel Cota Ruiz Departamento de Eléctrica y Electrónica, Tecnológico Nacional de México/I.T.L.M., Los Mochis
  • Andrés Castro Beltrán Facultad de Ingeniería Mochis
  • Clemente Alvarado Beltrán Facultad de Ingeniería Mochis

DOI:

https://doi.org/10.69681/lajae.v8i1.42

Palabras clave:

Cristalización, Solvotermal, Películas delgadas, TiO2

Resumen

Películas delgadas de TiO2 son ampliamente estudiadas debido a su gran potencial de aplicación en dispositivos electrónicos u optoelectrónicos. Siendo de gran interés por sus propiedades únicas, que las hacen apropiadas para su uso en transistores de películas delgadas, sensores o celdas solares. Obtener películas delgadas de TiO2 con características óptimas para aplicaciones específicas depende de los procesos de síntesis y fabricación. En este trabajo, se obtuvieron películas delgadas de TiO2 mediante un proceso de baja temperatura y de fácil fabricación, basado en el proceso sol-gel. Se sintetizaron películas de TiO2 dopadas con Sn, para modificar las propiedades físicas. Las películas obtenidas fueron sometidas a un proceso de post cristalización para mejorar su estructura. Las películas de TiO2 dopadas con Sn presentan estructura anatasa con espesores entre 173 a 237 nm y rugosidades menores a 2 nm.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

[1] T. Dikici, M. Toparli, Microstructure and mechanical properties of nanostructured and microstructured TiO2 films, Materials Science and Engineering: A 661 (2016) 19–24. https://doi.org/10.1016/j.msea.2016.03.023.

[2] E. Léonard, V. Jeux, 14 - Illuminating metal oxides containing luminescent probes for personalized medicine, in: S. Sagadevan, J. Podder, F. Mohammad (Eds.), Metal Oxides for Optoelectronics and Optics-Based Medical Applications, Elsevier, 2022: pp. 339–395. https://doi.org/https://doi.org/10.1016/B978-0-323-85824-3.00015-4.

[3] A.S. Hassanien, A.A. Akl, Optical characterizations and refractive index dispersion parameters of annealed TiO2 thin films synthesized by RF-sputtering technique at different flow rates of the reactive oxygen gas, Physica B Condens Matter 576 (2020). https://doi.org/10.1016/j.physb.2019.411718.

[4] B.D. Bhuskute, H. Ali-Löytty, J. Saari, A. Tukiainen, M. Valden, Ti 3+ Self-Doping-Mediated Optimization of TiO 2 Photocatalyst Coating Grown by Atomic Layer Deposition , ACS Applied Engineering Materials 2 (2024) 2278–2284. https://doi.org/10.1021/acsaenm.4c00372.

[5] R.T. Mittireddi, N.H. Makani, D.G. Prajapati, A.R.S. Gautam, R. Banerjee, E. Panda, Microstructure-induced functionality in titanium dioxide thin films, Mater Charact 199 (2023). https://doi.org/10.1016/j.matchar.2023.112818.

[6] B. Bajorowicz, M.P. Kobylański, A. Malankowska, P. Mazierski, J. Nadolna, A. Pieczyńska, A. Zaleska-Medynska, 4 - Application of metal oxide-based photocatalysis, in: A. Zaleska-Medynska (Ed.), Metal Oxide-Based Photocatalysis, Elsevier, 2018: pp. 211–340. https://doi.org/https://doi.org/10.1016/B978-0-12-811634-0.00004-4.

[7] H.N.C. Dharma, J. Jaafar, N. Widiastuti, H. Matsuyama, S. Rajabsadeh, M.H.D. Othman, M.A. Rahman, N.N.M. Jafri, N.S. Suhaimin, A.M. Nasir, N.H. Alias, A Review of Titanium Dioxide (TiO2)-Based Photocatalyst for Oilfield-Produced Water Treatment, Membranes (Basel) 12 (2022). https://doi.org/10.3390/membranes12030345.

[8] T.C. Paul, M.H. Babu, J. Podder, B.C. Dev, S.K. Sen, S. Islam, Influence of Fe3+ ions doping on TiO2 thin films: Defect generation, d-d transition and band gap tuning for optoelectronic device applications, Physica B Condens Matter 604 (2021). https://doi.org/10.1016/j.physb.2020.412618.

[9] C. Negi, P. Kandwal, J. Rawat, M. Sharma, H. Sharma, G. Dalapati, C. Dwivedi, Carbon-doped titanium dioxide nanoparticles for visible light driven photocatalytic activity, Appl Surf Sci 554 (2021). https://doi.org/10.1016/j.apsusc.2021.149553.

[10] Q. Zou, Y. Yamasaki, Y. Nishi, M. Matsubara, R. Osuga, K. Ninomiya, M. Nishibori, A. Muramatsu, K. Kanie, Cu-Doped TiO 2 Nanoparticle-Based Thin Films Obtained via the Mist-Deposition Method and Their Photocatalytic Antibacterial Properties , ACS Applied Engineering Materials 3 (2025) 1200–1209. https://doi.org/10.1021/acsaenm.5c00071.

[11] M.F. Gálvez-López, M.J. Muñoz-Batista, C.G. Alvarado-Beltrán, J.L. Almaral-Sánchez, B. Bachiller-Baeza, A. Kubacka, M. Fernández-García, Sn modification of TiO2 anatase and rutile type phases: 2-Propanol photo-oxidation under UV and visible light, Appl Catal B 228 (2018) 130–141. https://doi.org/10.1016/j.apcatb.2018.01.075.

[12] A. Arunachalam, S. Dhanapandian, C. Manoharan, Effect of Sn doping on the structural, optical and electrical properties of TiO2 films prepared by spray pyrolysis, Physica E Low Dimens Syst Nanostruct 76 (2015) 35–46. https://doi.org/10.1016/j.physe.2015.09.048.

[13] R. Graillot-Vuillecot, A.-L. Thomann, T. Lecas, C. Cachoncinlle, E. Millon, A. Caillard, Properties of Ti-oxide thin films grown in reactive magnetron sputtering with self-heating target, Vacuum 197 (2022) 110813. https://doi.org/https://doi.org/10.1016/j.vacuum.2021.110813.

[14] Q. Zhang, C. Li, Pure anatase phase titanium dioxide films prepared by mist chemical vapor deposition, Nanomaterials 8 (2018). https://doi.org/10.3390/nano8100827.

[15] M.G. Ambartsumov, O.M. Chapura, V.A. Tarala, Synthesis of titanium dioxide thin films via thermo- and plasma-enhanced atomic layer deposition, Appl Surf Sci 672 (2024) 160822. https://doi.org/https://doi.org/10.1016/j.apsusc.2024.160822.

[16] J.A. Camez-Cota, P. Gómez-López, A. Gaxiola, R.A. Várgas-Ortiz, V.M. Orozco-Carmona, R. Ramírez-Bon, A. Castro-Beltrán, C.G. Alvarado-Beltrán, A green approach modifications of TiO2 thin films for UV photophysical applications, Opt Mater (Amst) 165 (2025). https://doi.org/10.1016/j.optmat.2025.117153.

[17] D. Sánchez-Ahumada, L.J. Verastica-Ward, M.F. Gálvez-López, A. Castro-Beltrán, R. Ramirez-Bon, C.G. Alvarado-Beltrán, Low-temperature synthesis and physical characteristics of PS[sbnd]TiO 2 hybrid films for transparent dielectric gate applications, Polymer (Guildf) 172 (2019) 170–177. https://doi.org/10.1016/j.polymer.2019.03.067.

[18] S. Obregón, V. Rodríguez-González, Photocatalytic TiO2 thin films and coatings prepared by sol–gel processing: a brief review, J Solgel Sci Technol 102 (2022) 125–141. https://doi.org/10.1007/s10971-021-05628-5.

[19] Y.F. Ma, Y.M. Wang, J. Wen, A. Li, X.L. Li, M. Leng, Y.B. Zhao, Z.H. Lu, Review of roll-to-roll fabrication techniques for colloidal quantum dot solar cells, Journal of Electronic Science and Technology 21 (2023). https://doi.org/10.1016/j.jnlest.2023.100189.

[20] A.K. Vishwakarma, N.K. Yadav, A.K. Sharma, P. Yadav, S.K. Yadav, L. Yadava, Morphological and electronic properties of titanium dioxide thin film, Mater Today Proc 42 (2021) 1642–1646. https://doi.org/https://doi.org/10.1016/j.matpr.2020.07.474.

[21] S.M. Al Amin, M.A. Kowser, Influence of Ag doping on structural, morphological, and optical characteristics of sol-gel spin-coated TiO2 thin films, Heliyon 10 (2024). https://doi.org/10.1016/j.heliyon.2024.e37558.

[22] Y. Jiang, H. Liu, K. Shi, C. Tang, J. Song, Effect of annealing temperature on wettability of TiO2/PDA thin films, Surf Coat Technol 411 (2021). https://doi.org/10.1016/j.surfcoat.2021.126994.

[23] S.A. Bhandarkar, Prathvi, A. Kompa, M.S. Murari, D. Kekuda, R.K. Mohan, Investigation of structural and optical properties of spin coated TiO2:Mn thin films, Opt Mater (Amst) 118 (2021). https://doi.org/10.1016/j.optmat.2021.111254.

[24] A. Moatti, R. Bayati, J. Narayan, Epitaxial growth of rutile TiO2 thin films by oxidation of TiN/Si{100} heterostructure, Acta Mater 103 (2016) 502–511. https://doi.org/10.1016/j.actamat.2015.10.022.

[25] B. Zhang, G. Xu, S. Liu, F. Chi, Y. Tian, Electrochromic TiO2 films by a facile solvothermal process: Effect of ethanol content on growth and performance, Opt Mater (Amst) 122 (2021) 111744. https://doi.org/https://doi.org/10.1016/j.optmat.2021.111744.

[26] A.H. Mamaghani, F. Haghighat, C.-S. Lee, Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance, Chemosphere 219 (2019) 804–825. https://doi.org/https://doi.org/10.1016/j.chemosphere.2018.12.029.

[27] G. Arthi, J. Archana, M. Navaneethan, S. Ponnusamy, Y. Hayakawa, C. Muthamizhchelvan, S.G. Ramaraj, Solvothermal synthesis of 3D hierarchical rutile TiO2 nanostructures for efficient dye-sensitized solar cells, Mater Lett 337 (2023) 133961. https://doi.org/https://doi.org/10.1016/j.matlet.2023.133961.

[28] K. Ono, K. Kimura, T. Kato, K. Hayashi, R.M.G. Rajapakse, M. Shimomura, Epitaxial growth of a homogeneous anatase TiO2 thin film on LaAlO3 (001) using a solvothermal method with anticorrosive ligands, Chemical Engineering Journal 451 (2023) 138893. https://doi.org/https://doi.org/10.1016/j.cej.2022.138893.

[29] D.R. Sarker, M.N. Uddin, M. Elias, Z. Rahman, R.K. Paul, I.A. Siddiquey, M.A. Hasnat, R. Karim, M.A. Arafath, J. Uddin, P-doped TiO2-MWCNTs nanocomposite thin films with enhanced photocatalytic activity under visible light exposure, Clean Eng Technol 6 (2022). https://doi.org/10.1016/j.clet.2021.100364.

[30] D. Rajkumar, H. Umamahesvari, P. Nagaraju, Micro spherical anatase phase TiO2 thin films for room temperature operated formaldehyde gas sensor applications, Results Chem 5 (2023). https://doi.org/10.1016/j.rechem.2023.100946.

[31] E.R. Silva-Osuna, A.R. Vilchis-Nestor, R.C. Villarreal-Sanchez, A. Castro-Beltran, P.A. Luque, Study of the optical properties of TiO2 semiconductor nanoparticles synthesized using Salvia rosmarinus and its effect on photocatalytic activity, Opt Mater (Amst) 124 (2022). https://doi.org/10.1016/j.optmat.2022.112039.

[32] A. Castro-Beltrán, P.A. Luque, H.E. Garrafa-Gálvez, R.A. Vargas-Ortiz, A. Hurtado-Macías, A. Olivas, J.L. Almaral-Sánchez, C.G. Alvarado-Beltrán, Titanium butoxide molar ratio effect in the TiO2 nanoparticles size and methylene blue degradation, Optik (Stuttg) 157 (2018) 890–894. https://doi.org/10.1016/j.ijleo.2017.11.185.

[33] S. Shukla, S. Shirodkar, E. Panda, Anatase to rutile transition in TiO2 thin films: Role of tantalum and oxygen, J Alloys Compd 1006 (2024) 176242. https://doi.org/https://doi.org/10.1016/j.jallcom.2024.176242.

[34] K. Basavaraj, A. Nyayban, S. Panda, Structural phase transitions and elastic properties of TiO 2 polymorphs: Ab-initio study , IOP Conf Ser Mater Sci Eng 1248 (2022) 012064. https://doi.org/10.1088/1757-899x/1248/1/012064.

[35] M. Song, Z. Lu, D. Li, Phase transformations among TiO2polymorphs, Nanoscale 12 (2020) 23183–23190. https://doi.org/10.1039/d0nr06226j.

[36] D.A.S. Mulus, M.D. Permana, Y. Deawati, D.R. Eddy, A current review of TiO2 thin films: synthesis and modification effect to the mechanism and photocatalytic activity, Applied Surface Science Advances 27 (2025). https://doi.org/10.1016/j.apsadv.2025.100746.

[37] A. Artesani, S. Mosca, M.V. Dozzi, G. Valentini, D. Comelli, Determination of crystal phases in mixed TiO2 paint films by non-invasive optical spectroscopies, Microchemical Journal 155 (2020). https://doi.org/10.1016/j.microc.2020.104739.

[38] İ. Kanmaz, M. Tomakin, G. Aytemiz, M. Manır, V. Nevruzoğlu, Influence of Thermal Annealing on the Band-Gap of TiO2 Thin Films Produced by the Sol-Gel Method, Recep Tayyip Erdoğan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 5 (2024) 49–56. https://doi.org/10.53501/rteufemud.1395013.

[39] S. Sassi, A. Bouich, A. Hajjaji, L. Khezami, B. Bessais, B.M. Soucase, Cu-Doped TiO2 Thin Films by Spin Coating: Investigation of Structural and Optical Properties, Inorganics (Basel) 12 (2024) 188. https://doi.org/10.3390/inorganics12070188.

[40] R. Rajeswari, D. Venugopal, A. George, A.D. Raj, S.J. Sundaram, A.K.H. Bashir, M. Maaza, K. Kaviyarasu, Synthesis and characterization of Sn-doped TiO2 film for antibacterial applications, Appl Phys A Mater Sci Process 127 (2021). https://doi.org/10.1007/s00339-021-04656-w.

Descargas

Publicado

2025-10-16

Cómo citar

Camez Cota, J., Gómez López, P., Gaxiola, A., Sánchez Ahumada, D., Ramírez Bon, R., Cota Ruiz, M., … Alvarado Beltrán, C. (2025). Fabricación de Películas Delgadas de TiO₂ Dopadas con Sn con Post-Cristalización por Solvotermal. Latin American Journal of Applied Engineering, 8(1), 7–14. https://doi.org/10.69681/lajae.v8i1.42

Número

Sección

Artículos

Categorías

Artículos más leídos del mismo autor/a

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.