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Abstract— The floriculture industry is an increasing sector in Baja California, that exports most of its production. 

Products like decorative wreaths depend mainly on human inspection, which has often been prone to human errors and 

challenges in meeting the quality criteria. Implementing advanced technologies and automated inspection methods in 

floriculture, aiming to eradicate human errors, seems to contribute to minimizing defective products and ensuring 

compliance with quality standards and export regulations. In this paper, we assess the YOLO implementation, a deep 

learning approach, in the defect identification process. Results show that accuracy ranges from 48.4% to 81.3% and MaP 

from 53.2% to 87.6% using ten epochs. This paper provides valuable evidence for future studies and implementations 

regarding deep learning approaches used to evaluate the visual characteristics in the floriculture industry. 
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Resumen—La industria de la floricultura es un sector en crecimiento en Baja California, que exporta la mayor parte de 

su producción. Los productos como las coronas decorativas dependen principalmente de la inspección humana, que a 

menudo ha sido propensa a errores humanos y desafíos para cumplir con los criterios de calidad. La implementación de 

tecnologías y métodos de inspección automatizados en la floricultura para reducir los errores humanos, parece contribuir a 

minimizar los productos defectuosos y garantizar el cumplimiento de los estándares de calidad y las normas de exportación. 

En este artículo, evaluamos la implementación de YOLO, un enfoque de aprendizaje profundo, en el proceso de 

identificación de defectos. Los resultados muestran que la precisión varía del 48.4 % al 81.3 % y el MaP del 53.2 % al 

87.6% utilizando diez épocas. Este documento proporciona evidencia valiosa para futuros estudios e implementaciones con 

respecto a los enfoques de aprendizaje profundo utilizados para evaluar las características visuales en la industria de la 

floricultura. 

 

Palabras Claves—Floricultura, YOLO, aprendizaje profundo, exactitud, precisión, Recall, MaP.  

I. INTRODUCTION 

exican floriculture is a tradition and an important 

activity that generates over 250,000 direct jobs and 

nearly one million indirect jobs. Additionally, 60 % of its 

production is carried out by female hands. Twenty percent of 

the national flower production is destined for export. Mexico 

has embarked on its path to the global flower market, which 

is valued at around 44 billion US dollars annually [1]. 

Floriculture is a discipline that involves the industrial 

cultivation of various types of flowers and ornamental plants. 

Over the years, this activity has become one of the most 

profitable within the agricultural sector, as it generates 

significant economic benefits due to the demand in both 

domestic and international markets [2]. 

It is worth noting that floriculture products are not 

exclusively cut flowers but rather a range of related products, 

including live plants, bulbs, onions, tubers, tuberous roots, 

shoots, and rhizomes, as well as cuttings and grafts, flowers 

and buds (cut for bouquets or decorations, fresh, dried, 

bleached, dyed, impregnated, or prepared in other ways), 

foliage, leaves, branches, and other plant parts without 

flowers or buds, as well as herbs, mosses, and lichens, for 

fresh bouquets or decorations. To simplify the harmonized 

international trade system, this category is expressed as live 

plants and floriculture products [3]. 

Traditionally, plant disease detection has heavily relied on 
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human inspection, where experts visually examine plants for 

signs of disease. However, this manual approach can be 

time-consuming, subjective, and limited by the expertise of 

the individual inspector. Recently, a growing interest has 

been in utilizing deep learning techniques for automated 

plant disease detection. 

 

Countries like India rely heavily on agriculture, which is 

crucial for its economy, as it employs 70% of the population 

[4]. However, when plants become diseased, their yield is 

significantly reduced. Unfortunately, the detection of plant 

diseases is often delayed, leading to decreased yield and even 

plant mortality. Manual detection of diseases by experts over 

vast acres of land requires a large number of specialists, 

resulting in higher production costs. Typically, plant 

diseases manifest in various parts such as leaves, stems, 

flowers, and fruits. Detecting diseases on the leaves is 

comparatively easier than on other parts like stems, flowers, 

or fruits, as symptoms usually appear first on the leaves. The 

effectiveness of a classifier depends on the feature extraction 

algorithm used. Hence, it is crucial to develop an automated 

tool for leaf detection that can identify the specific type of 

disease; recent advancements in deep learning algorithms 

have significantly improved the accuracy of plant disease 

classification [4]. 

While human inspection still plays a role in certain cases, the 

integration of deep learning algorithms offers several 

advantages. It provides a faster and more objective approach 

to detect and diagnose plant diseases, potentially saving time 

and resources. However, it is important to note that the 

combination of human expertise and deep learning 

algorithms can lead to even more robust and accurate disease 

detection systems. Ongoing research in this area aims to 

optimize the integration of human inspection and deep 

learning to further enhance plant disease management 

practices. 

II. RELATED WORK 

In most cases, quality inspection involves a human operator 

inspecting the product to determine its compliance. 

However, the accuracy and reliability of inspection often 

prove unsatisfactory [5]. Literature shows that the accuracy 

of correctly rejecting precision-manufactured parts by 

human operators is close to 85%, while the industry average 

is close to 80% [6]. Similarly, operator errors accounted for 

23% of inaccuracies in quality control in the oil and gas 

industry [7]. 

 

Non-destructive testing (NDT) methods in low-capacity, 

high-consequence production operations, such as the 

assembly and disassembly of nuclear weapons, heavily rely 

on human visual inspection. Upon receiving them from the 

manufacturer, cables, critical components, tools, and 

equipment used in these operations undergo some level of 

visual inspection before each use to verify their quality and 

functionality. Additionally, NDT methods such as 

radiography, magnetic particles, and liquid penetrant testing 

rely on human-performed visual inspection [8]. 

An important type of quality inspection in manufacturing is 

visual inspection. Operators visually assess the product's 

condition at different stages and decide whether it can 

proceed to the next process [5]. The literature also mentions 

the advantages of implementing visual inspection, including 

reducing labor costs, eliminating human error during 

subjective judgment, and creating real-time visualized 

product data for documentation, traceability, and labeling 

[9]. 

Some evidence suggests that deep learning techniques 

surpass human inspection of grapevines [10]. There is such 

a large gap in performance between humans, the baseline 

system, and deep learning that an in-depth statistical analysis 

is not needed. It is obvious that there is a significant 

difference. Human recognition does not meet the minimum 

expectations for a production-level system (two sigma levels 

of performance) and supports the adage that it is hard to 

recognize grapevine yellow (as a defect) from sight [10]. 

These findings shed light on the limitations of relying solely 

on human inspection for quality control purposes. The results 

indicate that human operators, despite their expertise, can 

introduce errors and inconsistencies into the inspection 

process, potentially compromising the overall quality of the 

products. As such, the development and implementation of 

automated inspection systems, such as computer vision and 

artificial intelligence algorithms, hold promise for enhancing 

inspection accuracy and reducing human-induced errors. By 

leveraging these technologies, manufacturers can improve 

quality control practices and ensure the delivery of products 

that meet or exceed established standards.  

 

In recent years, the development of AI techniques has been 

increased. Regarding inspection purposes, Table 1 shows 

two studies presenting the main architectures used including 

ResNet101, ResNet50, VGG19, VGG16, AlexNet, SSD, 

Faster-RCNN, YOLOv4, YOLOv5, and Apple-Net. These 

studies centered on the classification of various 

characteristics including color, volume or density, shape, 

texture, color, and shape. The objects of investigation 

encompassed a diverse range of agricultural products, such 

as apples and corn weed. In the context of this scholarly 

article, it is essential to explicate the precise definitions of 

the metrics. "Acc" represents accuracy, "P" signifies 

precision, "mAP" denotes mean average precision, and "R" 

stands for recall. 
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Table 1. Examples of deep learning architectures used in agroindustry. 

 
Autor Datase

t 

Featur

e 

CNN Acc 

(%) 

P 

(%) 

mA

P 

(%) 

R 

(%) 

Veeragandh

am et al [11] 

Corn 

weed 

Shape ResNet1

01 

98.3

3 

98.3

5 

NR 98.3

3 

ResNet5

0 

99.1

6 

99.1

7 

NR 99.1

6 

VGG19 94.5 94.6 NR 94.5 

VGG16 96.8

3 

96.9

3 

NR 96.8

3 

AlexNet 99 99.0

1 

NR 99 

Zhu  [12] Apple

s leaf 

Color 

and 

shape 

SSD NR 86.2 86.

5 

88.7 

Faster-

RCNN 

NR 82.1 81.

2 

84.9 

YOLOv4 NR 84.5 90.

3 

86.7 

YOLOv5 NR 87.6 89.

8 

90.3 

Apple-

Net 

NR 93.1 95.

9 

94.4 

 

 

III. PROBLEM STATEMENT 

Although human inspection remains relevant in specific 

scenarios, the incorporation of deep learning algorithms 

brings forth numerous benefits. By providing a faster and 

more objective method for detecting and diagnosing bad-

quality products, the integration of deep learning algorithms 

has the potential to save time and resources. It is worth 

emphasizing that combining human expertise with deep 

learning algorithms can result in even more reliable and 

precise disease detection systems. Current research 

endeavors in this field are focused on optimizing the fusion 

of human inspection and deep learning to further enhance 

plant disease management practices. 

Automated visual inspection using deep learning is 

widely used in recent years. In the field of agriculture, deep 

learning can be deployed to reduce effective manpower, best 

time utilization, and supreme classification with improved 

accuracy. In agriculture, DL can be imported into many 

applications like soil identification, disease classification, 

fruit grading and many more [7]. 

The primary objective of this study is to identify previous 

studies focusing on the comparison between human 

inspection and deep learning techniques in the realm of plant 

inspections. The aim is to identify and analyze a range of 

methodologies and their respective accuracy rates employed 

in the field. By doing so, the study seeks to shed light on the 

effectiveness and potential advantages of utilizing deep 

learning algorithms as compared to traditional human 

inspection methods. Through an examination of existing 

literature, this research endeavors to provide valuable 

insights and recommendations for enhancing the accuracy 

and efficiency of plant inspections in various floricultural 

contexts. Additionally, it delves into the adverse 

consequences associated with inadequate inspections. These 

consequences can include subpar product quality, financial 

losses due to rejected or returned shipments, non-compliance 

with export regulations (such as the exclusion of plants with 

seeds when exporting to the United States), and diminished 

customer satisfaction.  

 

IV. METHODOLOGY 

A.  Tools 

The tools employed in this project encompassed a highly 

capable computing system featuring an AMD Ryzen 5 

4600H Radeon Graphics processor, running at a clock speed 

of 3.00 GHz, supplemented with a substantial 32 GB RAM. 

The operating system utilized was the 64-bit version of 

Windows. Additionally, a NVIDIA GeForce GTX1660 Ti 

graphics card was incorporated to enhance computational 

performance. To facilitate image capture, a Logitech C920 

PRO HD WEBCAM was utilized, capable of capturing 

images at a resolution of 1920x1080 pixels. 

 

It is worth emphasizing that the selection of these tools 

was made with careful consideration to ensure optimal 

performance and efficiency throughout the project. The 

utilization of a robust computing system, equipped with 

advanced components, aimed to leverage the capabilities of 

YOLOv8 effectively. The Logitech C920 PRO HD 

WEBCAM, renowned for its high-resolution imaging 

capabilities, was chosen to capture detailed images, thereby 

enhancing the accuracy and quality of the object detection 

process. 

B. Dataset 

For the dataset, a total of 851 images were collected, 

specifically focusing on defective flower wreaths with the 

following defects: low foliage volume, missing material in 

sections, high foliage volume, correct piece, and brown 

wreath color. These images were captured on different days 

and at various times throughout the day to introduce 

variability and ensure the model's robustness when presented 

with diverse environmental conditions. 

The deliberate inclusion of such variations in the dataset, 

encompassing different lighting conditions and temporal 

factors, introduced noise to the images. This intentional 

introduction of noise aimed to enhance the model's ability to 

adapt to real-world scenarios and improve its performance 

by training it on a more comprehensive and representative 

dataset. 
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Fig. 1.  Example of the dataset created by our own source for the wreaths. 

 

It is important to note that the incorporation of a diverse 

range of defects and the deliberate introduction of noise in 

the dataset were undertaken to bolster the model's capability 

to accurately detect and classify defective flower wreaths in 

a realistic setting. These considerations aimed to ensure the 

model's generalizability and effectiveness when applied to 

real-world scenarios beyond the controlled environment of 

the training dataset. 

C. Metrics 

The performance metrics employed in this study 

encompassed precision, recall, and mean average precision 

(mAP). These metrics were utilized to assess and evaluate 

the effectiveness and accuracy of the object detection 

models. 

 

Accuracy  

The accuracy indicates the rate of correctly classified 

images out of all the images in a test set for a particular 

growth stage class, which shows the overall effectiveness of 

the classifier [13] see equation (1). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠

∑ 𝑖𝑚𝑎𝑔𝑒𝑠
        (1) 

 

Similarly, accuracy is also represented as the equation 

(2). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑

𝑇𝑃𝑖+𝑇𝑁𝑖
𝑇𝑃𝑖+𝑇𝑁𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖

𝑘
𝑖=1

𝑘
           (2) 

 

Where k represents total class labels. TP, TN, FP, and FN 

are the numbers of the true positives, true negatives, false 

positives, and false negatives predictions for the considered 

class, respectively [14]. 

 

Another variant to estimate the accuracy is shown in the 

equation (3)   

 

𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑃+𝑁
                               (3) 

  

TN is the number of true negatives and TP is the number 

of true positives, N is the number of negative samples and P 

is the number of positive samples [10]. 

 

Finally, the accuracy formula shown in equation 4, 

represents the average percentage of images classified 

correctly in multi-class classification; which it is more 

important for a balanced dataset [11].  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑃+𝐹𝑁
                     (4) 

 

Regarding accuracy, this is considered the ratio of 

correctly labeled images to the total number of samples [15], 

showing the level of a model to predict the class of a 

prelabeled image [16], thus being the overall effectiveness of 

the classifier [17]. 

 

Precision  

The precision represents the proportion of true positive 

images among all images predicted to be positive [13], and 

can be estimated such as in the equation (5). 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐺𝑆) =
∑ 𝑖𝑚𝑎𝑔𝑒𝑠 𝑤𝑖𝑡ℎ 𝐺𝑆 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝐺𝑆

∑ 𝑖𝑚𝑎𝑔𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝐺𝑆
      (5) 

 

The equation (6) is also used by several studies to 

estimate the precision [10], [11], [15], [18], [19]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                            (6) 

  

Where TP (true positive) indicates the number of 

correctly detected objects, FP (false positive) indicates the 

number of falsely detected objects [18]. Similarly, precision 

is also known as positive predictive value (PPV) using the 

same equation as in (6) [10]. 

 Complementary definitions of precision include the 

average percentage of the actual positives and total positives 

[11], the probability given a positive label, how many of 

them are actually positive [15], or the performance of a 

model to predict the positive class [16]. Finally, precision is 

also considered the class agreement of the data labels with 

the positive labels defined by the classifier [17]. 

 

 

Recall  

The recall represents the proportion of images predicted 

to be positive among the images that are true positive [13]. 

An utilized formula to estimate the recall is given in the 

equation (7). 
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 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                     (7) 

 

Where TP (true positive) indicates the number of 

correctly detected objects; FP (false positive) indicates the 

number of falsely detected objects, and FN (false negative) 

indicates the number of missed objects [18]. 

Recall shows the average percentage of predicted 

positives and total actual positives, and it is highly 

recommended for the false negatives than the false positives 

[11]. Recall or Sensitivity is the accuracy of positively 

predicted instances describing how many were labeled 

correctly [15]. In addition, recall shows the degree of the 

model predicts the positive class when the actual class is 

positive [16]. 

 

Mean Average Precision (𝑚𝐴𝑃) 

 

The 𝑚𝐴𝑃 is defined as the average of the AP values for 

all categories [18]. The 𝑚𝐴𝑃 , also known as the mean 

average precision, is commonly used to measure a model 

performance [19]. The formula of 𝑚𝐴𝑃 is shown in equation 

8. 

 

𝑚𝐴𝑃 =
∑ 𝑃(𝑖)∆𝑅𝐾

𝑖=1

𝑁
                          (8) 

 

where 𝑘 indicates the number of samples in the test set, 

𝑃(𝑖)  is the size of the precision when i samples are 

recognized, ∆R(i) is the change of the recall rate when the 

detected samples change from i to i+1, and N is the number 

of categories in the multi-class detection task [20]. 

 

 

D. Experimental strategy 

A partitioning scheme was employed for the training 

process, allocating 70% of the images for training and 

reserving the remaining 30% for validation purposes. During 

this stage, two architectures were explored, namely 

YOLOv5, and YOLOv8, to determine the most effective and 

accurate model for the given task. 

 

Both YOLOv5 and YOLOv8 architectures were 

evaluated. These state-of-the-art object detection models are 

renowned for their exceptional accuracy and efficiency. 

These models excel at detecting objects in real-time 

scenarios by leveraging anchor-based detection and a 

carefully designed network structure. 

 

The selection and evaluation of multiple architectures 

aimed to identify the most suitable model that could 

effectively handle the complexities of the dataset and deliver 

accurate and reliable object detection results. Extensive 

experimentation and analysis were conducted to determine 

the optimal architecture that would yield the highest 

performance on the given task. 

 

It should be emphasized that the choice of these 

architectures was motivated by their track record of success 

in object detection tasks and their ability to handle a wide 

range of object classes effectively. By exploring multiple 

architectures, the training process aimed to identify the 

model with the best trade-off between accuracy, speed, and 

resource efficiency for the specific application. 

V. FIGURES AND TABLES 

The detection performance of YOLOv8 is demonstrated 

in Figure 2, showcasing its ability to accurately detect classes 

such as brown color, void regions, and objects with low 

volume. 

 
 

Fig. 2.  Example of class detection using YOLOv8 with 10 epochs. 

 

The detection performance of YOLOv5 is showcased in 

Figure 3, illustrating its ability to accurately identify classes 

such as green color and void regions, while exhibiting no 

detection of the low volume class. 
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Fig. 3.  Example of class detection using YOLOv5 with 10 epochs. 

 

VI. RESULTS 

A comparative analysis of two employed architectures, 

namely YOLOv5 and YOLOv8, is depicted in Table 2. The 

precision results obtained were 48.4%, and 81.3% 

respectively. The YOLO models were trained to detect six 

distinct classes, enabling the identification of errors. 

 
Table 2.  Example of class detection using YOLOv5 with 10 epochs. 

 
 

VII. DISCUSSION 

 The obtained results indicate notable differences in 

performance between YOLOv8 and YOLOv5 architectures 

in terms of precision, recall, and mAP. When considering the 

precision metric, YOLOv8 achieved a significantly higher 

value of 81.3%, while YOLOv5 demonstrated a lower 

precision of 48.4%. This suggests that YOLOv8 exhibited 

better accuracy in correctly identifying and classifying the 

target objects compared to YOLOv5. 

 

Regarding recall, YOLOv5 achieved a higher value of 

84.2%, indicating its ability to effectively detect a larger 

proportion of the actual positive instances in the dataset. In 

contrast, YOLOv8 demonstrated a lower recall rate of 

78.3%, implying that it may have missed some of the 

positive instances during the detection process. 

 

The mAP (mean average precision) metric provides an 

overall assessment of the detection performance. YOLOv8 

achieved a higher mAP value of 87.6%, indicating its ability 

to achieve a balance between precision and recall. On the 

other hand, YOLOv5 exhibited a lower mAP of 53.2%, 

suggesting a comparatively lower overall detection 

performance. 

 

In terms of training time, YOLOv8 required 1 hour to 

complete the training process, while YOLOv5 demonstrated 

a significantly shorter training time of 0.23 hours. This 

implies that YOLOv5 offers faster training speed, which may 

be advantageous in scenarios where time efficiency is 

crucial. 

 

Overall, the results suggest that YOLOv8 outperformed 

YOLOv5 in terms of precision and mAP, while YOLOv5 

showed higher recall. The choice between these architectures 

should consider the specific requirements of the application, 

such as the trade-off between accuracy and detection speed. 

Further analysis and evaluation are recommended to validate 

and refine these findings. 

 

VIII. CONCLUSION 

In conclusion, based on the comparison of the two 

architectures (YOLOv5 and YOLOv8) presented in Table 2, 

it can be observed that they exhibit varying levels of 

precision. YOLOv5 achieved a precision rate of 48.4%, 

while YOLOv8 achieved a higher precision rate of 81.3%. 

These architectures were trained to detect six different 

classes for error identification. These findings suggest that 

the choice of architecture depends on the specific 

requirements and objectives of the inspection task, 

considering the trade-off between precision and the number 

of classes to be detected. Further experimentation and 

evaluation are necessary to determine the most suitable 

architecture for a particular application in the context of 

visual inspection. It is important to note that for this type of 

inspection, training time is not a critical concern as it is 

typically conducted once for the given dataset. Finally, 

further research in this area is crucial to explore the potential 

of automated inspection systems and their integration into 

industrial settings for enhanced quality assurance. 
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